
Pduino and other Arduino Interfaces for Pd

Marius Schebella
Brooklyn Polytechnic University

333 Jay Street
Brooklyn, NY 11201

marius.schebella@gmail.com

ABSTRACT
In this paper, I will describe the Pduino interface and some
other possibilities to connect Pd and the Arduino board and
show examples of usage in different projects.
Arduino is an open-source physical computing input/output

(I/O) device used to develop interactive objects and instru-
ments. Pduino[15] (written by Hans-Christoph Steiner) is
a Pd interface for the Arduino, consisting of several Pd ab-
stractions and the Arduino firmware called "Firmata"[9].

Keywords
Pd, Arduino, Pduino, Physical Computing, Sensor Inter-
faces

1. INTRODUCTION
Pd processes data. Data can be received from an outside

source and can be sent to an outside source.
Input and output data would be sound, video, human in-

terface data, keyboard commands, mouse events, joystick
data, MIDI messages, or network communication data. One
class of data is received from and sent to the world of phys-
ical computing devices; sensors, electronic units, motors,
robots or instruments. There is no existing standard for
the communication between physical computing devices and
microcontroller interfaces (such as Arduino). Additionally
there is no existing standard for communication between mi-
crocontroller interfaces and Pd. Input and output data is de-
termined by the input and output devices the user chooses.

2. PHYSICAL COMPUTING
Sensors are the most common input devices. They sense

and measure; linear or spatial position, orientation, move-
ment, distance, weight, force, pressure, humidity, tempera-
ture, light intensity, air flow, electrostatic charge and much
more. Another very common input device would be a switch.
Output devices are all kinds of motors, servos, solenoids,

electric machines, robotic devices, instruments or lights. In-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Pd Convention 2007. Montréal, Québec, Canada.
Copyright 2007. Copyright remains with the author(s).

Figure 1: Physical Computing Devices can
send/receive serial or analog data, Microcontroller
Devices use USB, Bluetooth, MIDI... to communi-
cate with Computer

put and output devices usually are not directly hooked up
to the computer but need a small electric circuit including
a microcontroller that acts as an interface. The interfaces
then talk to the computer via a serial connection like USB
Bluetooth, MIDI or a network interface.
Setups with physical computing devices are used in inter-

active installations or for live performances by musicians,
dancers and so on. During the last few years it became
more easy for artists to access these technologies and use
them for their own purposes. Many new hardware solutions
have been developed. The Arduino is the focus of this paper.

3. I/O DEVICES
Arduino is one hardware solution for sensor input. Other

Microcontroller Devices would be Christian Klippel’s Mul-
tIO[14], the Create USB Interface[5], STEIM’s junXionbox[11]
(these devices talk to the USB port), Doepfer[7], Miditron[13]
(they talk to the MIDI port) or other devices which use the
serial or parallel port, ethernet and Bluetooth. It is easy
to build individual interfaces, based on one of the common
microcontrollers like PIC, Basic Stamp, Atmel (for example
the Arduino on a breadboard[2]).
Pd’s first external objects for serial communication ap-

peared between 1998 and 2000. [serialctl]1 by Guenter
Geiger, initially written for touchscreen devices, and Win-
fried Ritsch’s initial [comport] object, which remains the
main object for serial communication.

4. ARDUINO FEATURES
The Arduino board was released around August 2005. It

is based on the ATmega8 chip and is usually connected to
1a word in square brackets denotes a Pd object.

the computer via USB. It has 13 digital pins, which can
serve both as in and outputs, 3 of which allow Pulse-width
modulation (PWM) output, and 6 analog inputs. The ref-
erence designs for Arduino are distributed under a Creative
Commons license Attribution-ShareAlike 2.5.
The Arduino soon became widely spread. There is ex-

tensive online documentation with instructions for sensors
and devices used to measure or control, and there is quite
a big internet community (Arduino forum[1]) where people
can find support. From the very first Arduino was used as
a quasi standard tool for teaching "Physical Computing" at
universities or in workshops. Using the Arduino program-
ming language[3] is an easy way to write firmware for the
microcontroller. It is an implementation of Wiring, itself
built on Processing.
Of course the Arduino board is not the solution for every-

thing, the communication speed of the USB driver is limited
by some technical constrictions (see section 6). The number
of pins is limited (for example if you want to build inter-
faces with more controllers the MultIO[14] would be a bet-
ter choice), but in general Arduino is a great learning tool,
easy to use, robust and cheap.
Shortly after its release people started to use it in connec-

tion with Pd, writing firmware for their personal needs, one
of the first examples was presented in Barcelona (2006) by
Alex Posada and David Cuartielles.
In early 2006 the first version of Pduino was released by

Hans-Christoph Steiner.

5. CONNECTING THE ARDUINO TO PD

5.1 USB
There are several possibilities to connect the Arduino to

Pd. The easiest way is to use the USB port. Here is a very
basic example of Arduino code, that will talk to Pd.

int switchPin = 2;
// select the input pin for the switch

int ledPin = 13;
// select the pin for the LED

int switchState = 0;
// value data read from the switch

int ledState = 0;
// variable of the led status

void setup() {
Serial.begin(115200);
// start serial communication to Pd

}

void loop() {
switchState = digitalRead(switchPin);
// read the state of the switch

Serial.print(switchState, BYTE);
// send the value to the serial port (Pd)

if (Serial.available() > 0) {
ledState = Serial.read();
// receive data from Pd

digitalWrite(ledPin, ledState);
// turn the led on/off

}
}

The code has to be uploaded to the Arduino board, using
the Arduino IDE.
In Pd you create a [comport] object with two arguments:

the number of your device and the speed of the connection
[comport 6 115200]. [Fig. 2]

Figure 2: Simple Pd connection. Receive data, tog-
gle the checkbox and send the value back.

There are two prebuilt systems that you can use, if you
don’t want to write your own microcontroller code. One is
the SMS[18] (Simple Message System) written by Thomas
Ouellet Fredericks and the other one is Pduino[15], writ-
ten by Hans Christoph Steiner. With both packages, you
still use the Arduino Environment to upload the firmware
to the Arduino. Both solutions make Arduino easily acces-
sible from within Pd. The SMS is an asynchronous serial
communication protocol. Pd sends data to the Arduino and
the Arduino reacts by returning sensor data.
Pduino is based on the Firmata firmware, which is trying

to establish a broader standard of implemention in software
packages as; Processing[16], vvvv[20], Python[17], Max/MSP[12]
or Flash[10]. It uses a compact MIDI like message format,
optimized for high speed data transfer. The Pd part of
Pduino is mainly an object called [arduino] which depends
on some abstractions included in the Pd-extended package.
The object reads and spits out messages in an easy to handle
message format.

5.2 Wireless
You don’t necessarily have to connect the Arduino via

USB cable. If you have a Bluetooth Arduino or a Bluetooth
extension like BlueSmirf or if you want to use a Zigbee[4]
extension for wireless data transmission, the device will show
up in the device list of your computer and you can directly
use it from within Pd using the [comport] object.

5.3 MIDI
It is also possible to assemble the arduino as a MIDI de-

vice. Fig. 3 shows the most simple setup for MIDI out-
put[21].

6. SPEED, JITTER AND THE FIRMATA CY-
CLE

The bottle neck of data exchange between Pd and Arduino
is within the serial communication (USB cable, bluetooth,
MIDI) and the FTDI driver of the microcontroller [8]. The
rule is to encode the information in as few bytes as possible
and send bytes in packages that fit the driver size of 62 bytes.

Figure 3: MIDI connections; Arduino pin 1 is con-
nected to pin 5 of the MIDI jack, a 220 Ohm resistor
is used to connect pin 4 to the power (5V) and pin
3 is connected to the ground. MIDI exchanges data
at a baudrate of 31250 bps.

Sensing, encoding and decoding takes much less time. This
is more important for higher traffic.
The computation on Arduino runs in a loop. The first

step is constantly check for changing values at the digital
inlets and immediately send them to Pd without delay. The
second step is executed every 20 milliseconds. During that
call, all data that was received from Pd is handled and the
analog inputs are read and sent to Pd. That means messages
from Pd to the Arduino and analog data are processed at a
constant rate of 50 cycles per second. This can cause jitter
of up to 20 milliseconds, but makes sure that even with high
traffic, all data will be sent and recieved without delays.

7. PD’S ARDUINO OBJECT
Create the [arduino] object with an optional argument,

the device number of your Arduino. The message [devices(2

will give you a list of available devices. You can select an-
other device by sending the message [open devicenumber (
(where devicenumber denotes the number of the correspond-
ing serial devices).

7.1 Receiving Input
In order to receive data from the Arduino you have to

’turn on’ the inlets. Digital inlets are enabled all at once by
the message [digitalIns 1(. Analog inlets are enabled one
by one. For example send the message [analogIns 4 1(to
turn on analog pin 4. Incoming messages are received at the
left outlet of the [arduino] object.The values of the analog
inputs are sent permanently and are in a range between
0 and 1. For example [analog 4 0.423265(means pin 4
has a current value of 0.423265. Digital inputs will only be
received when they change. The syntax is ’digital pinnumber
value’ (where pinnumber is a single number and value one
of 0 or 1).

7.2 Controlling Outputs
To control outputs you first have to switch the correspond-

ing pin to "output mode". (If the pin was turned on at that
moment, automatically a message "digital pinnumber 0 is
2words in a square bracket and a parenthesis denote a Pd
message. Looks like this: [message(

sent.) Do this by sending [pinMode pinnumber 1(. After
that you can control the pins by messages like [digital
pinnumber value (. Pins 9-11 also allow pulsewidth mod-
ulation (PWM), a method used to produce analog voltage
output. Send a message [pwm pinnumber value ((where
value is a float from 0 to 1).
By sending the messages [info(and [version(to the

[arduino] object you will receive a message ’version num-
ber1 number2 ’, where number1 and number2 are the Fir-
mata version numbers.

8. SOME PROJECTS
Here are a few examples of art pieces using Pd and Ar-

duino.

8.1 Barbara’s Radio and Barbara’s Kitchen
These are two installations by Diane Ludin and Marius

Schebella using Pd and Arduino. The name is chosen after
the American scientist and Nobel Prize winner Barbara Mc-
Clintock, who studied chromosomes and how they change
during reproduction in maize. The first installation, Bar-
bara’s Radio plays genome code sequences by using morse
code, which is sent over an electromagnetic field of a solenoid
into a portable FM Radio and the other installation uses
"kitchen equipment" of a chemical laboratory - test tubes
which are hit by solenoids to produce rhythmical patterns.

8.2 Deflektor and Solenoid Concert
"Deflektor"[6] is an installation by Tim Vets and Erki De

Vries with rotating panels and video projections which was
shown at Z33, Hasselt, Belgium. The projection directions
are controlled by servo-motor-driven mirrors. The rotation
of the panels is also controlled by a Pd patch. Everything
runs on a linux system with Puredata, interfacing via 2 Ar-
duino’s.
"Solenoid concert"[19] is a piece released on YouTube

showing an installation by Roman Haefeli using solenoids
taped to windows, heating conduit and office equipment,
controlled via a Pd step sequencer.

9. ACKNOWLEDGMENTS
Miller Puckette (Pd), Guenter Geiger (serialctl, Pd ex-

ternals),Winfried Ritsch (comport, Pd externals), Christian
Klippel (MultIO), Hans-Christoph Steiner (Firmata, Pduino),
Alex Posada (artist), Thomas Ouellet Fredericks (SMS),
Tom Igoe (Author of "Physical Computing"[22], Arduino
developer), Massimo Banzi (Arduino developer), David Cuar-
tielles (Arduino developer), Gianluca Martino (Arduino de-
veloper), Dave Mellis (Arduino developer), Tim Vets and
Erki De Vries (artists), Roman Haefeli (artist), Diane Ludin
(artist).

10. REFERENCES
[1] Arduino forum.

http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl.
[2] Arduino on the breadboard. http://itp.nyu.edu/

physcomp/Tutorials/ArduinoBreadboard.
[3] Arduino software.

http://www.arduino.cc/en/Main/Software.
[4] Axic. http://mrtof.danslchamp.org/AXIC.
[5] Cui. http://www.create.ucsb.edu/~dano/CUI.

[6] Deflektor. http://www.timvets.net/projects/
erkiandtim/deflektor/deflektor.html.

[7] Doepfer. http://www.doepfer.de.
[8] Fast ftdi. http://www.arduino.cc/cgi-bin/yabb2/

YaBB.pl?num=1170939903/11.
[9] Firmata. http://www.arduino.cc/playground/

Interfacing/Firmata.
[10] Flash. http://www.adobe.com/products/flash.
[11] Junxionbox manual. http://www.steim.nl/

software/junxionbox/junXion%20boX%20manual.pdf.
[12] Max/msp. http://www.cycling74.com.
[13] Miditron. http://www.eroktronix.com.
[14] Multio. http://multio.mamalala.de.
[15] Pduino. http://at.or.at/hans/pd/objects.html.
[16] Processing. http://processing.org.
[17] Python. http://www.python.org.
[18] Sms, simple message system.

http://tof.danslchamp.org.
[19] Solenoid concert.

http://www.youtube.com/watch?v=g_hiz-Kx0kM.
[20] vvvv. http://vvvv.org.
[21] T. Igoe. Midi communication.

http://www.tigoe.net/pcomp/midi.shtml.
[22] D. O’Sullivan and T. Igoe. Physical Computing.

Course Technology Ptr, 2004.

